N-Derivatives of (Z)-Methyl 3-(4-Oxo-2-thioxothiazolidin-5-ylidene)methyl)-1 H-indole-2-carboxylates as Antimicrobial Agents-In Silico and In Vitro Evaluation

(Z)-甲基 3-(4-氧代-2-硫代噻唑烷-5-亚甲基)-1H-吲哚-2-羧酸酯的 N-衍生物作为抗菌剂的计算机模拟和体外评价

阅读:6
作者:Anthi Petrou, Athina Geronikaki, Victor Kartsev, Antonios Kousaxidis, Aliki Papadimitriou-Tsantarliotou, Marina Kostic, Marija Ivanov, Marina Sokovic, Ioannis Nicolaou, Ioannis S Vizirianakis

Abstract

Herein, we report the experimental evaluation of the antimicrobial activity of seventeen new (Z)-methyl 3-(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives. All tested compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin as well as streptomycin by 10-50 fold. The most sensitive bacterium was En. Cloacae, while E. coli was the most resistant one, followed by M. flavus. The most active compound appeared to be compound 8 with MIC at 0.004-0.03 mg/mL and MBC at 0.008-0.06 mg/mL. The antifungal activity of tested compounds was good to excellent with MIC in the range of 0.004-0.06 mg/mL, with compound 15 being the most potent. T. viride was the most sensitive fungal, while A. fumigatus was the most resistant one. Docking studies revealed that the inhibition of E. coli MurB is probably responsible for their antibacterial activity, while 14a-lanosterol demethylase of CYP51Ca is involved in the mechanism of antifungal activity. Furthermore, drug-likeness and ADMET profile prediction were performed. Finally, the cytotoxicity studies were performed for the most active compounds using MTT assay against normal MRC5 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。