Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing

用于低成本片上压力和流量传感的压阻式导电微流体膜

阅读:4
作者:Md Nazibul Islam, Steven M Doria, Xiaotong Fu, Zachary R Gagnon

Abstract

Over the last two decades, the field of microfluidics has received significant attention from both academia and industry. Each year, researchers report thousands of new prototype devices for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within the microfluidic devices themselves remains expensive and often cost-prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise, and real-time pressure and flow rate measurement capabilities have become increasingly important. While many labs use commercial platforms and sensors, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy-to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-carbon black conductive membranes and uses an impedance analyzer to measure impedance changes due to fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on the pressure gradient.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。