Chromosome-level genome assembly of Japanese chestnut (Castanea crenata Sieb. et Zucc.) reveals conserved chromosomal segments in woody rosids

日本栗(Castanea crenata Sieb. et Zucc.)的染色体水平基因组组装揭示了木本蔷薇属植物中保守的染色体片段

阅读:6
作者:Kenta Shirasawa, Sogo Nishio, Shingo Terakami, Roberto Botta, Daniela Torello Marinoni, Sachiko Isobe

Abstract

Japanese chestnut (Castanea crenata Sieb. et Zucc.), unlike other Castanea species, is resistant to most diseases and wasps. However, genomic data of Japanese chestnut that could be used to determine its biotic stress resistance mechanisms have not been reported to date. In this study, we employed long-read sequencing and genetic mapping to generate genome sequences of Japanese chestnut at the chromosome level. Long reads (47.7 Gb; 71.6× genome coverage) were assembled into 781 contigs, with a total length of 721.2 Mb and a contig N50 length of 1.6 Mb. Genome sequences were anchored to the chestnut genetic map, comprising 14,973 single nucleotide polymorphisms (SNPs) and covering 1,807.8 cM map distance, to establish a chromosome-level genome assembly (683.8 Mb), with 69,980 potential protein-encoding genes and 425.5 Mb repetitive sequences. Furthermore, comparative genome structure analysis revealed that Japanese chestnut shares conserved chromosomal segments with woody plants, but not with herbaceous plants, of rosids. Overall, the genome sequence data of Japanese chestnut generated in this study is expected to enhance not only its genetics and genomics but also the evolutionary genomics of woody rosids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。