DNA Damage- But Not Enzalutamide-Induced Senescence in Prostate Cancer Promotes Senolytic Bcl-xL Inhibitor Sensitivity

DNA 损伤(而非恩杂鲁胺诱导的前列腺癌衰老)可促进抗衰老 Bcl-xL 抑制剂敏感性

阅读:5
作者:Nicolas Malaquin, Arthur Vancayseele, Sophie Gilbert, Laureen Antenor-Habazac, Marc-Alexandre Olivier, Zakia Ait Ali Brahem, Fred Saad, Guila Delouya, Francis Rodier

Abstract

Cellular senescence is a natural tumor suppression mechanism defined by a stable proliferation arrest. In the context of cancer treatment, cancer cell therapy-induced senescence (TIS) is emerging as an omnipresent cell fate decision that can be pharmacologically targeted at the molecular level to enhance the beneficial aspects of senescence. In prostate cancer (PCa), TIS has been reported using multiple different model systems, and a more systematic analysis would be useful to identify relevant senescence manipulation molecular targets. Here we show that a spectrum of PCa senescence phenotypes can be induced by clinically relevant therapies. We found that DNA damage inducers like irradiation and poly (ADP-ribose) polymerase1 (PARP) inhibitors triggered a stable PCa-TIS independent of the p53 status. On the other hand, enzalutamide triggered a reversible senescence-like state that lacked evidence of cell death or DNA damage. Using a small senolytic drug panel, we found that senescence inducers dictated senolytic sensitivity. While Bcl-2 family anti-apoptotic inhibitor were lethal for PCa-TIS cells harboring evidence of DNA damage, they were ineffective against enzalutamide-TIS cells. Interestingly, piperlongumine, which was described as a senolytic, acted as a senomorphic to enhance enzalutamide-TIS proliferation arrest without promoting cell death. Overall, our results suggest that TIS phenotypic hallmarks need to be evaluated in a context-dependent manner because they can vary with senescence inducers, even within identical cancer cell populations. Defining this context-dependent spectrum of senescence phenotypes is key to determining subsequent molecular strategies that target senescent cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。