Comprehensive Analysis of Disease-Related Genes in Chronic Lymphocytic Leukemia by Multiplex PCR-Based Next Generation Sequencing

基于多重PCR的新一代测序技术全面分析慢性淋巴细胞白血病疾病相关基因

阅读:5
作者:Claudia Vollbrecht, Fabian Dominik Mairinger, Ulrike Koitzsch, Martin Peifer, Katharina Koenig, Lukas Carl Heukamp, Giuliano Crispatzu, Laura Wilden, Karl-Anton Kreuzer, Michael Hallek, Margarete Odenthal, Carmen Diana Herling, Reinhard Buettner

Background

High resolution molecular studies have demonstrated that the clonal acquisition of gene mutations is an important mechanism that may promote rapid disease progression and drug resistance in chronic lymphocytic leukemia (CLL). Therefore, the early and sensitive detection of such mutations is an important prerequisite for future predictive CLL diagnostics in the clinical setting. Material &

Conclusion

In summary, targeted sequencing using an amplicon based library technology allows a resource-efficient and sensitive mutation analysis for diagnostic or exploratory purposes and facilitates molecular subtyping of patient sets with adverse prognosis.

Methods

Here, we describe a novel, target-specific next generation sequencing (NGS) approach, which combines multiplex PCR-based target enrichment and library generation with ultra-deep high-throughput parallel sequencing using a MiSeq platform. We designed a CLL specific target panel, covering hotspots or complete coding regions of 15 genes known to be recurrently mutated and/or related to B-cell receptor signaling.

Results

High-throughput sequencing was performed using as little as 40 ng of peripheral blood B-cell DNA from 136 CLL patients and a dilution series of two ATM- or TP53-mutated cell lines, the latter of which demonstrated a limit of mutation detection below 5%. Using a stringent functional assessment algorithm, 102 mutations in 8 genes were identified in CLL patients, including hotspot regions of TP53, SF3B1, NOTCH1, ATM, XPO1, MYD88, DDX3X and the B-cell receptor signaling regulator PTPN6. The presence of mutations was significantly associated with an advanced disease status und molecular markers of an inferior prognosis, such as an unmutated IGHV mutation status or positivity for ZAP70 by flow cytometry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。