Multi-Scale Agent-Based Multiple Myeloma Cancer Modeling and the Related Study of the Balance between Osteoclasts and Osteoblasts

基于多尺度Agent的多发性骨髓瘤癌症模型及破骨细胞与成骨细胞平衡相关研究

阅读:6
作者:Minna Qiao, Dan Wu, Michelle Carey, Xiaobo Zhou, Le Zhang

Background

Currently, multiple myeloma is the second most common hematological malignancy in the U.S., constituting 1% of all cancers. With conventional treatment, the median survival time is typically 3-4 years, although it can be extended to 5-7 years or longer with advanced treatments. Recent research indicated that an increase in osteoclast (OC) activity is often associated withmultiple myeloma (MM) and that a decrease inosteoblast (OB) activity contributesto the osteolytic lesions in MM. Normally, the populations of OCs and OBs are inequilibrium, and an imbalance in this statecontributes to the development of lesions. Research procedures: A multi-scale agent-based multiple myeloma model was developed to simulate the proliferation, migration and death of OBs and OCs. Subsequently, this model was employed to investigate the efficacy of thethree most commonly used drugs for MM treatment under the following two premises: the reduction in the progression of MM and the re-establishment of the equilibrium between OCs and OBs. Research purposes: The simulated

Procedures

A multi-scale agent-based multiple myeloma model was developed to simulate the proliferation, migration and death of OBs and OCs. Subsequently, this model was employed to investigate the efficacy of thethree most commonly used drugs for MM treatment under the following two premises: the reduction in the progression of MM and the re-establishment of the equilibrium between OCs and OBs. Research purposes: The simulated

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。