Background
Currently, multiple myeloma is the second most common hematological malignancy in the U.S., constituting 1% of all cancers. With conventional treatment, the median survival time is typically 3-4 years, although it can be extended to 5-7 years or longer with advanced treatments. Recent research indicated that an increase in osteoclast (OC) activity is often associated withmultiple myeloma (MM) and that a decrease inosteoblast (OB) activity contributesto the osteolytic lesions in MM. Normally, the populations of OCs and OBs are inequilibrium, and an imbalance in this statecontributes to the development of lesions. Research procedures: A multi-scale agent-based multiple myeloma model was developed to simulate the proliferation, migration and death of OBs and OCs. Subsequently, this model was employed to investigate the efficacy of thethree most commonly used drugs for MM treatment under the following two premises: the reduction in the progression of MM and the re-establishment of the equilibrium between OCs and OBs. Research purposes: The simulated
Procedures
A multi-scale agent-based multiple myeloma model was developed to simulate the proliferation, migration and death of OBs and OCs. Subsequently, this model was employed to investigate the efficacy of thethree most commonly used drugs for MM treatment under the following two premises: the reduction in the progression of MM and the re-establishment of the equilibrium between OCs and OBs. Research purposes: The simulated
