Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis

Metrnl/C-KIT 轴通过抑制神经元铁死亡减轻蛛网膜下腔出血后的早期脑损伤

阅读:7
作者:You Zhou, Jiani Li, Ye Yuan, Hao Zhang, Xu Luo, Feng Wang, Yihao Tao, Jianhe Yue, Luyi Huang, Lei Wu, Yunxing Cao, Qian Yu, Qiuguang He

Background and purpose

Ferroptosis is a distinct form of cell death characterized by iron-dependent lipid peroxidation and plays a crucial role in the early brain injury (EBI) following subarachnoid hemorrhage (SAH). As a newly discovered endogenous ligand for the C-KIT receptor tyrosine kinase, meteorin-like protein (Metrnl) exerts regulatory functions in oxidative stress and protects against various diseases. However, the specific role of the Metrnl/C-KIT axis in neuronal ferroptosis during EBI following SAH remains to be elucidated.

Conclusions

Our study demonstrated that r-Metrnl reduced neuronal ferroptosis and improved neurological outcomes after SAH by modulating the C-KIT/AMPK/Nrf2 signaling pathway.

Methods

Sprague Dawley rats were used to establish the SAH model through endovascular perforation. r-Metrnl was administered intranasally 1 h after SAH. Metrnl shRNA, C-KIT inhibitor ISCK03, AMPK inhibitor dorsomorphin, and Nrf2 inhibitor ML385 were administered intracerebroventricularly or intraperitoneally before r-Metrnl treatment to explore the underlying mechanisms. Neurobehavioral assessments, immunofluorescence, western blot, ELISA, Fluoro-Jade C staining, transmission electron microscopy, and Nissl staining were conducted to evaluate the effects. Additionally, primary neuron culture with hemoglobin (Hb) stimulation was used for in vitro studies.

Purpose

Ferroptosis is a distinct form of cell death characterized by iron-dependent lipid peroxidation and plays a crucial role in the early brain injury (EBI) following subarachnoid hemorrhage (SAH). As a newly discovered endogenous ligand for the C-KIT receptor tyrosine kinase, meteorin-like protein (Metrnl) exerts regulatory functions in oxidative stress and protects against various diseases. However, the specific role of the Metrnl/C-KIT axis in neuronal ferroptosis during EBI following SAH remains to be elucidated.

Results

Phosphorylated C-KIT and endogenous Metrnl levels were upregulated after SAH. Knockdown of Metrnl aggravated neurobehavioral deficits and neuronal ferroptosis, whereas r-Metrnl treatment showed a protective effect. Mechanistically, r-Metrnl significantly increased the protein levels of SLC7A11, GPX4, FTH, FSP1, and GSH, whereas it decreased the levels of ACSL4, 4HNE, and MDA in the ipsilateral hemisphere 24 h after SAH. Also, r-Metrnl reduced mitochondrial shrinkage, increased mitochondrial crista, and decreased membrane density. However, the beneficial effects of r-Metrnl were partially reversed by ISCK03, dorsomorphin, or ML385 treatment both in vivo and in vitro. Conclusions: Our study demonstrated that r-Metrnl reduced neuronal ferroptosis and improved neurological outcomes after SAH by modulating the C-KIT/AMPK/Nrf2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。