Development of Tyrocidine A analogues with improved antibacterial activity

开发具有增强抗菌活性的酪氨酸 A 类似物

阅读:10
作者:Michael A Marques, Diane M Citron, Clay C Wang

Abstract

The development of new antibacterial therapeutic agents capable of halting microbial resistance is a chief pursuit in clinical medicine. Classes of antibiotics that target and destroy bacterial membranes are attractive due to the decreased likelihood that bacteria will be able to generate resistance to this mechanism. The amphipathic cyclic decapeptide, Tyrocidine A, is a model for this class of antibiotics. Tyrocidine A is composed of a hydrophobic and a hydrophilic face, allowing for insertion into bacterial membranes, creating porous channels and destroying membrane integrity. We have used a combination of molecular modeling and solid phase synthesis to prepare Tyrocidine A and analogues 1-8. The minimum inhibitory concentrations (MICs) of these compounds were determined for a host of gram positive species and E. coli as a representative gram negative bacterium. Analogues 2 and 5 demonstrated moderate 2- to 8-fold increases in antibacterial activity over the parent Tyrocidine A for a variety of pathogenic microbes (best MICs for E. coli 32 microg/mL and 2 microg/mL for most gram positives). Examination of the structure- activity relationship between the analogues demonstrated a preference for increased amphipathicity but did not show a clear preference for increasing hydrophilicity versus hydrophobicity in improving antibacterial activity. Of note, movement of positively charged lysine residues or neutral pentafluorophenyl residues to different positions within the cyclopeptide ring system demonstrated improvements in antibacterial activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。