Hybrid Signal-Processing Method Based on Neural Network for Prediction of NO3, K, Ca, and Mg Ions in Hydroponic Solutions Using an Array of Ion-Selective Electrodes

基于神经网络的混合信号处理方法,使用离子选择电极阵列预测水培溶液中的 NO3、K、Ca 和 Mg 离子

阅读:5
作者:Woo-Jae Cho, Hak-Jin Kim, Dae-Hyun Jung, Hee-Jo Han, Young-Yeol Cho

Abstract

In closed hydroponics, fast and continuous measurement of individual nutrient concentrations is necessary to improve water- and nutrient-use efficiencies and crop production. Ion-selective electrodes (ISEs) could be one of the most attractive tools for hydroponic applications. However, signal drifts over time and interferences from other ions present in hydroponic solutions make it difficult to use the ISEs in hydroponic solutions. In this study, hybrid signal processing combining a two-point normalization (TPN) method for the effective compensation of the drifts and a back propagation artificial neural network (ANN) algorithm for the interpretation of the interferences was developed. In addition, the ANN-based approach for the prediction of Mg concentration which had no feasible ISE was conducted by interpreting the signals from a sensor array consisting of electrical conductivity (EC) and ion-selective electrodes (NO3, K, and Ca). From the application test using 8 samples from real greenhouses, the hybrid method based on a combination of the TPN and ANN methods showed relatively low root mean square errors of 47.2, 13.2, and 18.9 mg∙L-1 with coefficients of variation (CVs) below 10% for NO3, K, and Ca, respectively, compared to those obtained by separate use of the two methods. Furthermore, the Mg prediction results with a root mean square error (RMSE) of 14.6 mg∙L-1 over the range of 10-60 mg∙L-1 showed potential as an approximate diagnostic tool to measure Mg in hydroponic solutions. These results demonstrate that the hybrid method can improve the accuracy and feasibility of ISEs in hydroponic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。