MMP-2 expression by fibroblasts is suppressed by the myofibroblast phenotype

成纤维细胞的 MMP-2 表达受到肌成纤维细胞表型的抑制

阅读:10
作者:Eric W Howard, Beverly J Crider, Dawn L Updike, Elizabeth C Bullen, Eileen E Parks, Carol J Haaksma, David M Sherry, James J Tomasek

Abstract

During wound healing, fibroblasts transition from quiescence to a migratory state, then to a contractile myofibroblast state associated with wound closure. We found that the myofibroblast phenotype, characterized by the expression of high levels of contractile proteins, suppresses the expression of the pro-migratory gene, MMP-2. Fibroblasts cultured in a 3-D collagen lattice and allowed to develop tension showed increased contractile protein expression and decreased MMP-2 levels in comparison to a stress-released lattice. In 2-D cultures, factors that promote fibroblast contractility, including serum or TGF-β, down-regulated MMP-2. Pharmacologically inducing F-actin disassembly or reduced contractility increased MMP-2 expression, while conditions that promote F-actin assembly suppressed MMP-2 expression. In all cases, changes in MMP-2 levels were inversely related to changes in the contractile marker, smooth muscle α-actin. To determine if the mechanisms involved in contractile protein gene expression play a direct role in MMP-2 regulation, we used RNAi-mediated knock-down of the myocardin-like factors, MRTF-A and MRTF-B, which induced the down-regulation of contractile protein genes by fibroblasts under both serum-containing and serum-free conditions. In the presence of serum or TGF-β, MRTF-A/B knock-down resulted in the up-regulation of MMP-2; serum-free conditions prevented this increased expression. Together, these results indicate that, while MMP-2 expression is suppressed by F-actin formation, its up-regulation is not simply a consequence of contractile protein down-regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。