Functional characterization and immunomodulatory properties of Lactobacillus helveticus strains isolated from Italian hard cheeses

从意大利硬奶酪中分离的瑞士乳杆菌菌株的功能特征和免疫调节特性

阅读:11
作者:Miriam Zago, Lucia Massimiliano, Barbara Bonvini, Giuseppe Penna, Giorgio Giraffa, Maria Rescigno

Abstract

Lactobacillus helveticus carries many properties such as the ability to survive gastrointestinal transit, modulate the host immune response, accumulate biopeptides in milk, and adhere to the epithelial cells that could contribute to improving host health. In this study, the applicability as functional cultures of four L. helveticus strains isolated from Italian hard cheeses was investigated. A preliminary strain characterization showed that the ability to produce folate was generally low while antioxidant, proteolytic, peptidase, and β-galactosidase activities resulted high, although very variable, between strains. When stimulated moDCs were incubated in the presence of live cells, a dose-dependent release of both the pro-inflammatory cytokine IL-12p70 and the anti-inflammatory cytokine IL-10, was shown for all the four strains. In the presence of cell-free culture supernatants (postbiotics), a dose-dependent, decrease of IL-12p70 and an increase of IL-10 was generally observed. The immunomodulatory effect took place also in Caciotta-like cheese made with strains SIM12 and SIS16 as bifunctional (i.e., immunomodulant and acidifying) starter cultures, thus confirming tests in culture media. Given that the growth of bacteria in the cheese was not necessary (they were killed by pasteurization), the results indicated that some constituents of non-viable bacteria had immunomodulatory properties. This study adds additional evidence for the positive role of L. helveticus on human health and suggests cheese as a suitable food for delivering candidate strains and modulating their anti-inflammatory properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。