Chronology of critical events in neonatal rat ventricular myocytes occurring during reperfusion after simulated ischemia

新生大鼠心室肌细胞模拟缺血再灌注过程中发生的关键事件的时序

阅读:5
作者:Katie J Sciuto, Steven W Deng, Alonso Moreno, Alexey V Zaitsev

Abstract

While an ischemic insult poses a lethal danger to myocardial cells, a significant proportion of cardiac myocytes remain viable throughout the ischemic episode and die, paradoxically, only after the blood flow is reinstated. Despite decades of research, the actual chronology of critical events leading to cardiomyocyte death during the reperfusion phase remains poorly understood. Arguably, identification of the pivotal event in this setting is necessary to design effective strategies aimed at salvaging the myocardium after an ischemic attack. Here we used neonatal rat ventricular myocytes (NRVMs) subjected to 20-30 min of simulated ischemia followed by 1 hour of "reperfusion". Using different combinations of spectrally-compatible fluorescent indicators, we analyzed the relative timing of the following events: (1) abnormal increase in cytoplasmic [Ca2+] (TCaCy); (2) abnormal increase in mitochondrial [Ca2+] (TCaMi); (3) loss of mitochondrial inner membrane potential (ΔΨm) indicating mitochondrial permeability transitions (TMPT); (4) sacrolemmal permeabilization (SP) to the normally impermeable small fluorophore TO-PRO3 (TSP). In additional experiments we also analyzed the timing of abnormal uptake of Zn2+ into the cytoplasm (TZnCy) relative to TCaCy and TSP. We focused on those NRVMs which survived anoxia, as evidenced by at least 50% recovery of ΔΨm and the absence of detectable SP. In these cells, we found a consistent sequence of critical events in the order, from first to last, of TCaCy, TCaMi, TMPT, TSP. After detecting TCaCy and TCaMi, abrupt switches between 1.1 mM and nominally zero [Ca2+] in the perfusate quickly propagated to the cytoplasmic and mitochondrial [Ca2+]. Depletion of the sarcoplasmic reticulum with ryanodine (5 μM)/thapsigargin (1 μM) accelerated all events without changing their order. In the presence of ZnCl2 (10-30 μM) in the perfusate we found a consistent timing sequence TCaCy < TZn ≤ TSP. In some cells ZnCl2 interfered with Ca2+ uptake, causing "steps" or "gaps" in the [Ca2+]Cy curve, a phenomenon never observed in the absence of ZnCl2. Together, these findings suggest an evolving permeabilization of NRVM's sarcolemma during reoxygenation, in which the expansion of the pore size determines the timing of critical events, including TMPT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。