Development of AI-assisted microscopy frameworks through realistic simulation with pySTED

通过 pySTED 进行真实模拟,开发 AI 辅助显微镜框架

阅读:6
作者:Anthony Bilodeau, Albert Michaud-Gagnon, Julia Chabbert, Benoit Turcotte, Jörn Heine, Audrey Durand, Flavie Lavoie-Cardinal

Abstract

The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both image acquisition and analysis phases. Development of artificial intelligence-assisted super-resolution microscopy is often limited by access to large biological datasets, as well as by difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic stimulated emission depletion microscopy simulation platform, pySTED, for the development and deployment of artificial intelligence strategies for super-resolution microscopy. pySTED integrates theoretically and empirically validated models for photobleaching and point spread function generation in stimulated emission depletion microscopy, as well as simulating realistic point-scanning dynamics and using a deep learning model to replicate the underlying structures of real images. This simulation environment can be used for data augmentation to train deep neural networks, for the development of online optimization strategies and to train reinforcement learning models. Using pySTED as a training environment allows the reinforcement learning models to bridge the gap between simulation and reality, as showcased by its successful deployment on a real microscope system without fine tuning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。