Neuregulin-1 Accelerates Functional Motor Recovery by Improving Motoneuron Survival After Brachial Plexus Root Avulsion in Mice

神经调节蛋白-1 通过提高小鼠臂丛神经根撕脱伤后运动神经元的存活率来加速功能性运动恢复

阅读:5
作者:Shuangxi Chen, Yuhui Hou, Zhikai Zhao, Yunhao Luo, Shiqin Lv, Qianghua Wang, Jing Li, Liumin He, Libing Zhou, Wutian Wu

Abstract

Brachial plexus root avulsion (BPRA) results in the complete loss of motor function in the upper limb, mainly due to the death of spinal motoneurons (MNs). The survival of spinal MNs is the key to the recovery of motor function. Neuregulin-1 (Nrg1) plays fundamental roles in nervous system development and nerve repair. However, its functional role in BPRA remains unclear. On the basis of our findings that Nrg1 is down-regulated in the ventral horn in a mouse model of BPRA, Nrg1 may be associated with BPRA. Here, we investigated whether recombinant Nrg1β (rNrg1β) can enhance the survival of spinal MNs and improve functional recovery in mice following BPRA. In vitro studies on primary cultured mouse MNs showed that rNrg1β increased the survival rate in a dose-dependent manner, reaching a peak at 5 nM, which increased the survival rate and enhanced the pERK levels in MNs under H2O2-induced oxidative stress. In vivo studies revealed that rNrg1β improved the functional recovery of elbow flexion, promoted the survival of MNs, enhanced the re-innervation of biceps brachii, and decreased the muscle atrophy. These results suggest that Nrg1 may provide a potential therapeutic strategy for root avulsion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。