Allopregnanolone Promotes Neuronal and Oligodendrocyte Differentiation In Vitro and In Vivo: Therapeutic Implication for Alzheimer's Disease

孕烯醇酮促进体内和体外神经元和少突胶质细胞分化:对阿尔茨海默病的治疗意义

阅读:4
作者:Shuhua Chen, Tian Wang, Jia Yao, Roberta Diaz Brinton

Abstract

Previous studies demonstrated that the endogenous neurosteroid allopregnanolone (Allo) promotes regeneration of rodent and human neural progenitor/neural stem cells (NSCs) in vitro and in vivo, and restores neurogenesis and cognitive function in the male triple transgenic mouse model of Alzheimer's disease (3xTgAD). In this study, we investigated Allo regulation of neuronal differentiation of adult mouse neural stem cells from both sexes. Outcomes indicated that the age-dependent shift from neuronal to glial differentiation was accelerated and magnified in 3xTgAD adult NSCs compared to that in age-matched non-Tg NSCs. Coincident with the decline in neuronal differentiation, the number of immature neurons declined earlier in 3xTgAD mice, which was consistent with observations in the aged Alzheimer's human brain. Allo treatment restored the neuron/astrocyte ratio derived from adult 3xTgAD NSCs and increased both NSC proliferation and differentiation in the 3xTgAD brain. Allo treatment also significantly increased expression of Olig2, an oligodendrocyte precursor cell marker, as well as Olig2-positive cells in the corpus callosum of 3xTgAD mice. Increased neuronal and oligodendrocyte differentiation was paralleled by an increase in the expression levels of insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R). Collectively, these findings are consistent with Allo acting as a pleiotropic therapeutic to promote regeneration of gray and white matter in the Alzheimer's brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。