Temozolomide Drives Ferroptosis via a DMT1-Dependent Pathway in Glioblastoma Cells

替莫唑胺通过 DMT1 依赖性途径驱动胶质母细胞瘤细胞中的铁死亡

阅读:4
作者:Qingxin Song, Shanxin Peng, Zhiqing Sun, Xueyuan Heng, Xiaosong Zhu

Conclusion

Taken together, our findings indicate that temozolomide may suppress cell growth partly by inducing ferroptosis by targeting DMT1 expression in glioblastoma cells.

Methods

We utilized the CCK8 assay to evaluate cytotoxicity. Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), iron, and glutathione (GSH) were measured. Flow cytometry and fluorescence microscope were used to detect the production of reactive oxygen species (ROS). Western blotting, RT-PCR and siRNA transfection were used to investigate molecular mechanisms.

Purpose

Temozolomide is used in first-line treatment for glioblastoma. However, chemoresistance to temozolomide is common in glioma patients. In addition, mechanisms for the anti-tumor effects of temozolomide are largely unknown. Ferroptosis is a form of programmed cell death triggered by disturbed redox homeostasis, overloaded iron, and increased lipid peroxidation. The present study was performed to elucidate the involvement of ferroptosis in the anti-tumor mechanisms of temozolomide. Materials and

Results

Temozolomide increased the levels of LDH, MDA, and iron and reduced GSH levels in TG905 cells. Furthermore, we found that ROS levels and DMT1 expression were elevated in TG905 cells treated with temozolomide and were accompanied by a decrease in the expression of glutathione peroxidase 4, indicating an iron-dependent cell death, ferroptosis. Our results also showed that temozolomide-induced ferroptosis is associated with regulation of the Nrf2/HO-1 pathway. Conversely, DMT1 knockdown by siRNA evidently blocked temozolomide-induced ferroptosis in TG905 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。