Neuronal Regulation of Fast Synaptotagmin Isoforms Controls the Relative Contributions of Synchronous and Asynchronous Release

快速突触结合蛋白同工酶的神经元调节控制同步和异步释放的相对贡献

阅读:4
作者:Josef Turecek, Wade G Regehr

Abstract

Neurotransmitter release can be synchronous and occur within milliseconds of action potential invasion, or asynchronous and persist for tens of milliseconds. The molecular determinants of release kinetics remain poorly understood. It has been hypothesized that asynchronous release dominates when fast Synaptotagmin isoforms are far from calcium channels or when specialized sensors, such as Synaptotagmin 7, are abundant. Here we test these hypotheses for GABAergic projections onto neurons of the inferior olive, where release in different subnuclei ranges from synchronous to asynchronous. Surprisingly, neither of the leading hypotheses accounts for release kinetics. Instead, we find that rapid Synaptotagmin isoforms are abundant in subnuclei with synchronous release but absent where release is asynchronous. Viral expression of Synaptotagmin 1 transforms asynchronous synapses into synchronous ones. Thus, the nervous system controls levels of fast Synaptotagmin isoforms to regulate release kinetics and thereby controls the ability of synapses to encode spike rates or precise timing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。