Shoot organogenesis and somatic embryogenesis from leaf and petiole explants of endangered Euryodendron excelsum

濒危植物猪血树的叶片和叶柄外植体的芽器官发生和体细胞胚胎发生

阅读:10
作者:Yuping Xiong #, Shuangyan Chen #, Teng Wu, Kunlin Wu, Yuan Li, Xinhua Zhang, Jaime A Teixeira da Silva, Songjun Zeng, Guohua Ma

Abstract

Euryodendron excelsum H.T. Chang is a rare and endangered woody plant endemic to China. It is very important to conserve and propagate this species from extinction. In this study, leaves and petioles from the axillary shoots in vitro were used as explants to culture on the different plant growth regulator (PGR) woody plant medium (WPM) and establish an efficient shoot proliferation and plant regeneration system. WPM supplemented with 1.0 mg/L 2,4-D induced callus dedifferentiated into buds and somatic embryos on various media,including PGR-free WPM. However, only adventitious shoots formed on WPM with 1.0 mg/L of cytokinins such as 6-benzyladenine (BA), kinetin (KIN) or thidiazuron (TDZ). When another cytokinin, zeatin, was used, somatic embryos were induced directly from From cut surface of these explants. Adventitious roots could be induced from both explants on WPM with 1.0 mg/L α-naphthaleneacetic acid (NAA). Somatic embryos cultured in PGR-free WPM or WPM with 0.2 mg/L NAA developed roots. Plantlets derived from somatic embryos were transferred to a peat: sand (1:1, v/v) substrate, and showed survival rates of 64.3% at 30 days and 54.6% at 90 days. Callus clumps with adventitious shoot buds that were transferred to WPM containing 1.0 mg/L BA and 0.2 mg/L NAA generated a mean 3.3 multiple shoots. Callus-derived shoots regenerated and rooted successfully (100%) on agar-free vermiculite-based WPM with 0.5 μM NAA after 30 d. Plantlets transplanted to peat soil: vermiculite (1:1, v/v) displayed the highest survival (96.7%) after three months.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。