Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury

各向异性磁流体水凝胶持续释放硫化氢用于修复脊髓损伤

阅读:14
作者:Ruofei Wang, Xiaxiao Wu, Zhenming Tian, Tian Hu, Chaoyang Cai, Guanping Wu, Gang-Biao Jiang, Bin Liu

Abstract

Spinal cord injury (SCI) results in massive neuronal death, axonal disruption, and cascading inflammatory response, which causes further damage to impaired neurons. The survived neurons with damaged function fail to form effective neuronal circuits. It is mainly caused by the neuroinflammatory microenvironment at injury sites and regenerated axons without guidance. To address this challenge, a ferrofluid hydrogel (FFH) was prepared with Ferric tetrasulfide (Fe3S4), carboxymethyl chitosan, and gold. Its internal structural particles can be oriented in a magnetic field to acquire anisotropy. Moreover, Fe3S4 can release hydrogen sulfide (H2S) with anti-inflammatory effects under acidic conditions. Regarding in vitro experiments, 0.01g/ml Fe3S4 FFH significantly reduced the inflammatory factors produced by LPS-induced BV2 cells. Oriented and longer axons of the induced neural stem cells loaded on anisotropic FFH were observed. In vivo experiments showed that FFH reduced the activated microglia/macrophage and the expression of pro-inflammatory factors in SCI rats through the NF-κB pathway. Moreover, it significantly promoted directional axonal regrowth and functional recovery after SCI. Given the critical role of inhibition of neuroinflammation and directional axonal growth, anisotropic Fe3S4 FFH is a promising alternative for the treatment of SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。