Peroxisome proliferator-activated receptor gamma coactivator-1alpha enhances antiproliferative activity of 5'-deoxy-5-fluorouridine in cancer cells through induction of uridine phosphorylase

过氧化物酶体增殖激活受体γ辅激活因子-1α通过诱导尿苷磷酸化酶增强癌细胞中5'-脱氧-5-氟尿苷的抗增殖活性

阅读:7
作者:Xingxing Kong, Heng Fan, Xiaojun Liu, Rui Wang, Jichao Liang, Nishith Gupta, Yong Chen, Fude Fang, Yongsheng Chang

Abstract

Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is capable of coactivating several nuclear receptors and transcription factors that participate in the regulation of multiple metabolic processes, including gluconeogenesis, mitochondrial biogenesis, and adaptive thermogenesis. Uridine phosphorylase (UPase) catalyzes the reversible conversion of uridine into uracil and contributes to the antineoplastic activity of 5'-deoxy-5-fluorouridine (5'-DFUR) and homeostasis of uridine levels in plasma and tissues. This study demonstrates uridine phosphorylase as a novel target gene of PGC-1alpha, which induces the transcription and enzymatic activity of UPase in various cancer cells and thus augments their susceptibility to 5'-DFUR. PGC-1alpha-induced activation of UPase expression occurs at its transcription level that is mediated by an estrogen-related receptor (ERR) binding site (-1078 to -1070 base pairs) mapped in the promoter region of UPase gene. Our mutational studies using luciferase reporter construct together with electrophoretic mobility shift assays confirm the binding of ERR to PGC-1alpha-responsive element. Moreover, the inhibition of PGC-1alpha/ERRalpha-dependent signaling by 3-[4-(2,4-bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT790) compromises the ability of PGC-1alpha to induce the transcript of UPase, indicating PGC-1alpha-dependent and ERRalpha-mediated up-regulation of UPase. Finally, the overexpression of PGC-1alpha sensitizes breast and colon cancer cells to growth inhibition by 5'-DFUR presumably by inducing apoptosis in tumor cells and XCT790 can inhibit the process. Taken together, our results corroborate the regulatory function of PGC-1alpha in uridine homeostasis and imply its links with the energy metabolism. The mechanistic elucidation of this association between both cellular pathways should advance the clinical use of 5-fluorouracil-based chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。