Lysosomal agents inhibit store-operated Ca2+ entry

溶酶体药物抑制钙池操纵的 Ca2+ 进入

阅读:5
作者:Anthony J Morgan, Antony Galione

Abstract

Pharmacological manipulation of lysosome membrane integrity or ionic movements is a key strategy for probing lysosomal involvement in cellular processes. However, we have found an unexpected inhibition of store-operated Ca2+ entry (SOCE) by these agents. Dipeptides [glycyl-L-phenylalanine 2-naphthylamide (GPN) and L-leucyl-L-leucine methyl ester] that are inducers of lysosomal membrane permeabilization (LMP) uncoupled endoplasmic reticulum Ca2+-store depletion from SOCE by interfering with Stim1 oligomerization and/or Stim1 activation of Orai. Similarly, the K+/H+ ionophore, nigericin, that rapidly elevates lysosomal pH, also inhibited SOCE in a Stim1-dependent manner. In contrast, other strategies for manipulating lysosomes (bafilomycin A1, lysosomal re-positioning) had no effect upon SOCE. Finally, the effects of GPN on SOCE and Stim1 was reversed by a dynamin inhibitor, dynasore. Our data show that lysosomal agents not only release Ca2+ from stores but also uncouple this release from the normal recruitment of Ca2+ influx.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。