A micromechanics based elasto-plastic damage model for unidirectional composites under off-axis tensile loads

基于细观力学的单向复合材料离轴拉伸载荷下的弹塑性损伤模型

阅读:9
作者:Yanchao Wang, Dong Chen, Nengwen Li, Huanquan Yuan, Zengyu Zhu, Yongxiang Li, Zhengming Huang

Abstract

Nonlinear properties of composite materials are essential for their engineering application. In this work, a three-phase micromechanics bridging model is employed to evaluate the nonlinear behavior of a composite from properties of fiber, matrix and interphase. It is assumed that the matrix elastoplasticity and the interface damage are two major sources of the nonlinearity. The former is described by the J2 flow rule. The latter is approximated by an interphase with stiffness degradation. For an interphase, an equivalent damage stress is introduced to account for the effect of normal and shear stress on the interface damage growth. Further, an explicit empirical equation is developed to relate the equivalent damage stress and the stiffness degradation of an interphase. The present elasto-plastic damage model is validated by comparing with experimental data of a series of composites under off-axis tensile loads.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。