Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding

鞘氨醇-1-磷酸通过抑制多配体聚糖-1脱落保护内皮糖萼

阅读:7
作者:Ye Zeng, Roger H Adamson, Fitz-Roy E Curry, John M Tarbell

Abstract

Endothelial cells (ECs) are covered by a surface glycocalyx layer that forms part of the barrier and mechanosensing functions of the blood-tissue interface. Removal of albumin in bathing media induces collapse or shedding of the glycocalyx. The electrostatic interaction between arginine residues on albumin, and negatively charged glycosaminoglycans (GAGs) in the glycocalyx have been hypothesized to stabilize the glycocalyx structure. Because albumin is one of the primary carriers of the phospholipid sphingosine-1-phosphate (S1P), we evaluated the alternate hypothesis that S1P, acting via S1P1 receptors, plays the primary role in stabilizing the endothelial glycocalyx. Using confocal microscopy on rat fat-pad ECs, we demonstrated that heparan sulfate (HS), chondroitin sulfate (CS), and ectodomain of syndecan-1 were shed from the endothelial cell surface after removal of plasma protein but were retained in the presence of S1P at concentrations of >100 nM. S1P1 receptor antagonism abolished the protection of the glycocalyx by S1P and plasma proteins. S1P reduced GAGs released after removal of plasma protein. The mechanism of protection from loss of glycocalyx components by S1P-dependent pathways was shown to be suppression of metalloproteinase (MMP) activity. General inhibition of MMPs protected against loss of CS and syndecan-1. Specific inhibition of MMP-9 and MMP-13 protected against CS loss. We conclude that S1P plays a critical role in protecting the glycocalyx via S1P1 and inhibits the protease activity-dependent shedding of CS, HS, and the syndecan-1 ectodomain. Our results provide new insight into the role for S1P in protecting the glycocalyx and maintaining vascular homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。