Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1

赖氨酸脱甲基酶 2A 通过上调 Jagged1 促进乳腺癌干细胞和血管生成

阅读:7
作者:Jing-Yi Chen, Chien-Feng Li, Pei-Yi Chu, You-Syuan Lai, Chung-Hsing Chen, Shih Sheng Jiang, Ming-Feng Hou, Wen-Chun Hung

Abstract

Alterations of histone methylation dynamically regulated by methyltransferases and demethylases are frequently found in human cancers. Here, we showed that expression of lysine demethylase 2A (KDM2A) is markedly increased in human breast cancer and its overexpression is associated with tumor progression and poor prognosis. Knockdown of KDM2A in breast cancer cells reduced proliferation but not viability. Gene set enrichment analysis revealed that inhibition of KDM2A down-regulates angiogenic genes with concurrent reduction of Jagged1 (JAG1), NOTCH1 and HEY1 in the NOTCH signaling. Chromatin immunoprecipitation- quantitative polymerase chain reaction (ChIP-qPCR) demonstrated the binding of KDM2A to the JAG1 promoter and the increase of methylation of Lys-36 of histone H3 (H3K36) in KDM2A-depleted MDA-MB-231 cells. Tumorsphere formation was significantly reduced in KDM2A-depleted cells which could be reversed by ectopic expression of JAG1. A selective KDM2A inhibitor daminozide also decreased the number of tumorsphere and the number of CD24-/CD44hi cells. In addition, daminozide acted synergistically with cisplatin in cell killing. We identified SOX2 as a direct transcriptional target of KDM2A to promote cancer stemness. Depletion of KDM2A in MDA-MB-231 cells attenuated NOTCH activation and tube formation in co-cultured endothelial cells. Two pro-angiogenic factors JAG1 and PDGFA are key mediators for KDM2A to enhance angiogenesis. Finally, inhibition of KDM2A significantly decreased tumor growth and angiogenesis in orthotopic animal experiments. Collectively, we conclude that KDM2A functions as an oncogene in breast cancer by upregulating JAG1 to promote stemness, chemoresistance and angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。