Hippocampal neuroprotection mediated by secretome of human mesenchymal stem cells against experimental stroke

人类间充质干细胞分泌组介导的海马神经保护作用对抗实验性中风

阅读:5
作者:Afsaneh Asgari Taei, Leila Dargahi, Pariya Khodabakhsh, Mehdi Kadivar, Maryam Farahmandfar

Aims

Regenerative medicine literature has demonstrated that the therapeutic potentials of mesenchymal stem cells (MSCs) in experimental stroke are attributed to secreted bioactive factors rather than to cell replacement. Here, we explored the effects of secretome or conditioned medium (CM) derived from human embryonic stem cell-derived MSCs (hESC-MSCs) on hippocampal neurogenesis, inflammation, and apoptosis in experimental stroke.

Conclusion

Our results suggest that hESC-MSC-CM could promote neurogenesis and protect brain tissue from ischemic injury, partly mediated by induction of angiogenesis and neurotrophic factors and inhibition of inflammatory and apoptotic factors expression.

Methods

Ischemic stroke was induced by right middle cerebral artery occlusion (MCAO) in male Wistar rats, and CM was infused either one time (1-h post-stroke; CM1) or three times (1-, 24-, and 48-h post-stroke; CM3) into left lateral ventricle. Neurogenesis markers (Nestin, Ki67, Doublecortin, and Reelin) were assessed at transcript and protein levels in the dentate gyrus of the hippocampus on day seven following MCAO. In parallel, changes in the gene expression of markers of apoptosis (Bax and Bim, as well as an anti-apoptotic marker of Bcl2), inflammation (IL-1β and IL-6, as well as IL-10 as an anti-inflammatory cytokine), trophic factors (BDNF, GDNF, NGF, and NT-3), and angiogenesis (CD31 and VEGF) in the hippocampus were assessed.

Results

Our results demonstrate that CM3 treatment could stimulate neurogenesis and angiogenesis concomitant with inhibition of inflammation, apoptosis, and neuronal loss in ischemic brains. Furthermore, rats treated with CM3 exhibited upregulation in neurotrophic factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。