Gene-Specific Assessment of Guanine Oxidation as an Epigenetic Modulator for Cardiac Specification of Mouse Embryonic Stem Cells

基因特异性评估鸟嘌呤氧化作为小鼠胚胎干细胞心脏特征的表观遗传调节剂

阅读:5
作者:Joonghoon Park, Jong Woo Park, Hawmok Oh, Fernanda S Maria, Jaeku Kang, Xiuchun Tian

Abstract

Epigenetics have essential roles in development and human diseases. Compared to the complex histone modifications, epigenetic changes on mammalian DNA are as simple as methylation on cytosine. Guanine, however, can be oxidized as an epigenetic change which can undergo base-pair transversion, causing a genetic difference. Accumulating evidence indicates that reactive oxygen species (ROS) are important signaling molecules for embryonic stem cell (ESC) differentiation, possibly through transient changes on genomic DNA such as 7,8-dihydro-8-oxoguanine (8-oxoG). Technical limitations on detecting such DNA modifications, however, restrict the investigation of the role of 8-oxoG in ESC differentiation. Here, we developed a Hoogsteen base pairing-mediated PCR-sequencing assay to detect 8-oxoG lesions that can subsequently cause G to T transversions during PCR. We then used this assay to assess the epigenetic and transient 8-oxoG formation in the Tbx5 gene of R1 mouse ESCs subjected to oxidative stress by removing 2-mercaptoethanol (2ME) from the culture media. To our surprise, significantly higher numbers of 8-oxoG-mediated G∙C to C∙G transversion, not G∙C to T∙A, were detected at 7th and 9th base position from the transcription start site of exon 1 of Tbx5 in ESCs in the (-)2ME than (+)2ME group (p < 0.05). This was consistent with the decrease in the amount of amplifiable of DNA harboring the 8-oxoG lesions at the Tbx5 promoter region in the oxidative stressed ESCs. The ESCs responded to oxidative stress, possibly through the epigenetic effects of guanine oxidation with decreased proliferation (p < 0.05) and increased formation of beating embryoid bodies (EBs; p < 0.001). Additionally, the epigenetic changes of guanine induced up-regulation of Ogg1 and PolB, two base excision repairing genes for 8-oxoG, in ESCs treated with (-)2ME (p < 0.01). Together, we developed a gene-specific and direct quantification assay for guanine oxidation. Using oxidative stressed mouse ESCs, we validated this assay and assessed the epigenetic effects of 8-oxoG by studying expression of DNA repair genes, ESC proliferation, and EB formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。