Valproic Acid Prodrug Affects Selective Markers, Augments Doxorubicin Anticancer Activity and Attenuates Its Toxicity in a Murine Model of Aggressive Breast Cancer

丙戊酸前药影响选择性标记物、增强阿霉素抗癌活性并减弱其在侵袭性乳腺癌小鼠模型中的毒性

阅读:7
作者:Nataly Tarasenko, Harel Josef Wilner, Abraham Nudelman, Gania Kessler-Icekson, Ada Rephaeli

Abstract

We studied the unique inhibitor of the histone deacetylases (HDAC) valproate-valpromide of acyclovir (AN446) that upon metabolic degradation release the HDAC inhibitor (HDACI) valproic acid (VPA). Among the HDAC inhibitors that we have tested, only AN446, and to a lesser extent VPA, synergized with doxorubicin (Dox) anti-cancer activity. Romidepsin (Rom) was additive and the other HDACIs tested were antagonistic. These findings led us to test and compare the anticancer activities of AN446, VPA, and Rom with and without Dox in the 4T1 triple-negative breast cancer murine model. A dose of 4 mg/kg once a week of Dox had no significant effect on tumor growth. Rom was toxic, and when added to Dox the toxicity intensified. AN446, AN446 + Dox, and VPA + Dox suppressed tumor growth. AN446 and AN446 + Dox were the best inhibitory treatments for tumor fibrosis, which promotes tumor growth and metastasis. Dox increased fibrosis in the heart and kidneys, disrupting their function. AN446 most effectively suppressed Dox-induced fibrosis in these organs and protected their function. AN446 and AN446 + Dox treatments were the most effective inhibitors of metastasis to the lungs, as measured by the gap area. Genes that control and regulate tumor growth, DNA damage and repair, reactive oxygen production, and generation of inflammation were examined as potential therapeutic targets. AN446 affected their expression in a tissue-dependent manner, resulting in augmenting the anticancer effect of Dox while reducing its toxicity. The specific therapeutic targets that emerged from this study are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。