The crucial role of divalent metal ions in the DNA-acting efficacy and inhibition of the transcription of dimeric chromomycin A3

二价金属离子对二聚体色霉素A3的DNA作用效应和转录抑制的关键作用

阅读:7
作者:Chun-Wei Hsu, Show-Mei Chuang, Wen-Ling Wu, Ming-Hon Hou

Abstract

Chromomycin A3 (Chro) is capable of forming a stable dimeric complex via chelation with Ni(II), Fe(II) and Co(II). According to the circular dichroism study, the dimer conformations are significantly different among the Fe(II)-, Co(II)-, and Ni(II)-containing dimeric Chro complexes; however, the dimer conformations were preserved at high temperatures. Furthermore, we conducted a systematic study to determine the effects of these divalent metal ions on the DNA-acting efficacy of dimeric Chro, including its DNA-binding affinity, DNA stabilization capacity, DNA cleavage activity, and the inhibition of transcription both in vitro and within cells. Kinetic analyses using surface plasmon resonance (SPR) showed that Ni(II)(Chro)(2) exhibited the highest K(a) with a value of 1.26 × 10(7) M(-1), which is approximately 1.6- and 3.7-fold higher than the K(a) values obtained for Co(II)(Chro)(2) and Fe(II)(Chro)(2), respectively. The T(m) and ΔG values for the DNA duplex increased after the addition of drug complexes in the following order: Ni(II)(Chro)(2)>Co(II)(Chro)(2)>Fe(II)(Chro)(2). In the DNA integrity assays, the DNA cleavage rate of Co(II)(Chro)(2) (1.2 × 10(-3) s(-1)) is higher than those of Fe(II)(Chro)(2) and Ni(II)(Chro)(2), which were calculated to be 1 × 10(-4) and 3.1 × 10(-4) s(-1), respectively. Consistent with the SPR and UV melting results, Ni(II)(Chro)(2) possesses the highest inhibitory effect on in vitro transcription and c-myc transcription within cells compared to Co(II)(Chro)(2) and Fe(II)(Chro)(2). By comparing the cytotoxicity among Co(II)(Chro)(2), Fe(II)(Chro)(2), and Ni(II)(Chro)(2) to several cancer cell lines, our studies concluded that Ni(II)(Chro)(2) displayed more potential antitumor activities than Co(II)(Chro)(2) and Fe(II)(Chro)(2) did due to its higher DNA-acting efficacy. Changes to the divalent metal ions in the dimeric Chro complexes have been correlated with improved anticancer profiles. The availability of new metal derivatives of Chro may introduce new possibilities for exploiting the unique properties of this class of compounds for therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。