RyR2 regulates store-operated Ca2+ entry, phospholipase C activity, and electrical excitability in the insulinoma cell line INS-1

RyR2 调节胰岛素瘤细胞系 INS-1 中的钙池操纵 Ca2+ 进入、磷脂酶 C 活性和电兴奋性

阅读:10
作者:Kyle E Harvey, Shiqi Tang, Emily K LaVigne, Evan P S Pratt, Gregory H Hockerman

Abstract

The ER Ca2+ channel ryanodine receptor 2 (RyR2) is required for maintenance of insulin content and glucose-stimulated insulin secretion, in part, via regulation of the protein IRBIT in the insulinoma cell line INS-1. Here, we examined store-operated and depolarization-dependent Ca2+entry using INS-1 cells in which either RyR2 or IRBIT were deleted. Store-operated Ca2+ entry (SOCE) stimulated with thapsigargin was reduced in RyR2KO cells compared to controls, but was unchanged in IRBITKO cells. STIM1 protein levels were not different between the three cell lines. Basal and stimulated (500 μM carbachol) phospholipase C (PLC) activity was also reduced specifically in RyR2KO cells. Insulin secretion stimulated by tolbutamide was reduced in RyR2KO and IRBITKO cells compared to controls, but was potentiated by an EPAC-selective cAMP analog in all three cell lines. Cellular PIP2 levels were increased and cortical f-actin levels were reduced in RyR2KO cells compared to controls. Whole-cell Cav channel current density was increased in RyR2KO cells compared to controls, and barium current was reduced by acute activation of the lipid phosphatase pseudojanin preferentially in RyR2KO cells over control INS-1 cells. Action potentials stimulated by 18 mM glucose were more frequent in RyR2KO cells compared to controls, and insensitive to the SK channel inhibitor apamin. Taken together, these results suggest that RyR2 plays a critical role in regulating PLC activity and PIP2 levels via regulation of SOCE. RyR2 also regulates β-cell electrical activity by controlling Cav current density and SK channel activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。