D-Serine regulates proliferation and neuronal differentiation of neural stem cells from postnatal mouse forebrain

D-丝氨酸调节小鼠出生后前脑神经干细胞的增殖和神经元分化

阅读:6
作者:Xu Huang, Hui Kong, Mi Tang, Ming Lu, Jian-Hua Ding, Gang Hu

Background and purpose

D-Serine, the endogenous co-agonist of N-methyl-D-aspartate (NMDA) receptors, has been recognized as an important gliotransmitter in the mammalian brain. D-serine has been shown to prevent psychostimulant-induced decrease in hippocampal neurogenesis. However, the mechanism whereby D-serine regulates neurogenesis has not been fully characterized. Therefore, this study was designed to investigate the impacts of D-serine on the proliferation, migration, and differentiation of primary cultured neural stem cells (NSCs).

Conclusions

Our findings demonstrate for the first time that NSCs can synthesize D-serine and, thereby, promote themselves proliferation and neuronal differentiation, which may afford a novel therapeutic strategy for the neurological disorders that require nerve cell replenishment, such as neurodegenerative diseases and stroke.

Purpose

D-Serine, the endogenous co-agonist of N-methyl-D-aspartate (NMDA) receptors, has been recognized as an important gliotransmitter in the mammalian brain. D-serine has been shown to prevent psychostimulant-induced decrease in hippocampal neurogenesis. However, the mechanism whereby D-serine regulates neurogenesis has not been fully characterized. Therefore, this study was designed to investigate the impacts of D-serine on the proliferation, migration, and differentiation of primary cultured neural stem cells (NSCs).

Results

Immunohistochemistry analysis revealed NSCs expressed D-serine as well as serine racemase (SR). Degradation of endogenous D-serine with D-amino acid oxidase (DAAO) significantly inhibited the proliferation and neuronal differentiation of NSCs, but failed to affect their radial migration. Reversely, addition of exogenous D-serine did not affect the proliferation and migration of NSCs, but promoted NSC differentiation into neurons. Furthermore, DAAO could suppress the amplitude of glutamate-induced Ca(2+) transient, and thereby, inhibited the phosphorylation of glycogen synthase kinase3β (GSK3β), extracellular signal-regulated kinases1/2 (ERK1/2), and cAMP-responsive element-binding protein (CREB). Conclusions: Our findings demonstrate for the first time that NSCs can synthesize D-serine and, thereby, promote themselves proliferation and neuronal differentiation, which may afford a novel therapeutic strategy for the neurological disorders that require nerve cell replenishment, such as neurodegenerative diseases and stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。