Nucleotide diversity patterns at the DREB1 transcriptional factor gene in the genome donor species of wheat (Triticum aestivum L)

小麦基因组供体物种 DREB1 转录因子基因的核苷酸多样性模式(Triticum aestivum L)

阅读:8
作者:Yi Xu, Fang-Yao Sun, Chun Ji, Quan-Wen Hu, Cheng-Yu Wang, De-Xiang Wu, Genlou Sun

Abstract

Bread wheat (AABBDD) originated from the diploid progenitor Triticum urartu (AA), a relative of Aegilops speltoides (BB), and Ae. tauschii (DD). The DREB1 transcriptional factor plays key regulatory role in low-temperature tolerance. The modern breeding strategies resulted in serious decrease of the agricultural biodiversity, which led to a loss of elite genes underlying abiotic stress tolerance in crops. However, knowledge of this gene's natural diversity is largely unknown in the genome donor species of wheat. We characterized the dehydration response element binding protein 1 (DREB1) gene-diversity pattern in Ae. speltoides, Ae. tauschii, T. monococcum and T. urartu. The highest nucleotide diversity value was detected in Ae. speltoides, followed by Ae. tauschii and T. monococcum. The lowest nucleotide diversity value was observed in T. urartu. Nucleotide diversity and haplotype data might suggest no reduction of nucleotide diversity during T. monococcum domestication. Alignment of the 68 DREB1 sequences found a large-size (70 bp) insertion/deletion in the accession PI486264 of Ae. speltoides, which was different from the copy of sequences from other accessions of Ae. speltoides, suggesting a likely existence of two different ancestral Ae. speltoides forms. Implication of sequences variation of Ae. speltoides on origination of B genome in wheat was discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。