Evolution of stridulatory mechanisms: vibroacoustic communication may be common in leaf-footed bugs and allies (Heteroptera: Coreoidea)

发声机制的进化:振动声学通讯可能在叶足虫及其近亲中很常见(异翅目:Coreoidea)

阅读:10
作者:Michael Forthman, Chandler Downie, Christine W Miller, Rebecca T Kimball

Abstract

Intra- and interspecific communication is crucial to fitness via its role in facilitating mating, territoriality and defence. Yet, the evolution of animal communication systems is puzzling-how do they originate and change over time? Studying stridulatory morphology provides a tractable opportunity to deduce the origin and diversification of a communication mechanism. Stridulation occurs when two sclerotized structures rub together to produce vibratory and acoustic (vibroacoustic) signals, such as a cricket 'chirp'. We investigated the evolution of stridulatory mechanisms in the superfamily Coreoidea (Hemiptera: Heteroptera), a group of insects known for elaborate male fighting behaviours and enlarged hindlegs. We surveyed a large sampling of taxa and used a phylogenomic dataset to investigate the evolution of stridulatory mechanisms. We identified four mechanisms, with at least five evolutionary gains. One mechanism, occurring only in male Harmostini (Rhopalidae), is described for the first time. Some stridulatory mechanisms appear to be non-homoplastic apomorphies within Rhopalidae, while others are homoplastic or potentially homoplastic within Coreidae and Alydidae, respectively. We detected no losses of these mechanisms once evolved, suggesting they are adaptive. Our work sets the stage for further behavioural, evolutionary and ecological studies to better understand the context in which these traits evolve and change.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。