Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate

中链脂肪酸和甘油单月桂酸酯对液体和饲料中非洲猪瘟病毒的抑制作用

阅读:9
作者:Joshua A Jackman, Astghik Hakobyan, Hovakim Zakaryan, Charles C Elrod

Background

The ongoing African swine fever virus (ASFv) epidemic has had a major impact on pig production globally and biosecurity efforts to curb ASFv infectivity and transmission are a high priority. It has been recently identified that feed and feed ingredients, along with drinking water, can serve as transmission vehicles and might facilitate transboundary spread of ASFv. Thus, it is important to test the antiviral activity of regulatory compatible, antiviral feed additives that might inhibit ASFv infectivity in feed. One promising group of feed additive candidates includes medium-chain fatty acids (MCFA) and monoglyceride derivatives, which are known to disrupt the lipid membrane surrounding certain enveloped viruses and bacteria.

Conclusion

Together, the findings in this study indicate that MCFA and GML inhibit ASFv in liquid conditions and that GML is also able to reduce ASFv infectivity in feed, which may help to curb disease transmission.

Results

The antiviral activities of selected MCFA, namely caprylic, capric, and lauric acids, and a related monoglyceride, glycerol monolaurate (GML), to inhibit ASFv in liquid and feed conditions were investigated and suitable compounds and inclusion rates were identified that might be useful for mitigating ASFv in feed environments. Antiviral assays showed that all tested MCFA and GML inhibit ASFv. GML was more potent than MCFA because it worked at a lower concentration and inhibited ASFv due to direct virucidal activity along with one or more other antiviral mechanisms. Dose-dependent feed experiments further showed that sufficiently high GML doses can significantly reduce ASFv infectivity in feed in a linear manner in periods as short as 30 min, as determined by infectious viral titer measurements. Enzyme-linked immunosorbent assay (ELISA) experiments revealed that GML treatment also hinders antibody recognition of the membrane-associated ASFv p72 structural protein, which likely relates to protein conformational changes arising from viral membrane disruption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。