Mechanism of peptides from rice hydrolyzed proteins hindering starch digestion subjected to hydrothermal treatment

大米水解蛋白肽阻碍热液处理淀粉消化的作用机制

阅读:5
作者:Xiaoxue Lu, Rongrong Ma, Jinling Zhan, Zhengyu Jin, Yaoqi Tian

Abstract

Clarifying the interactions between food components is critical in designing carbohydrate-based foods with low digestibility. To date, the hindering effect of starch-protein interactions on starch digestion has attracted extensive attention. In this study, rice proteins were further hydrolyzed, and rice peptides (RP) with different molecular weights were obtained by ultrafiltration. The effects and possible mechanisms of RP with different molecular weights on the structure, thermal properties, and in vitro digestibility of cooked rice starch were investigated. All peptides slowed the digestion of rice starch in a concentration-dependent manner. A concentration of 10% RP>10 decreased the rapidly digestible starch content from 68.02 to 45.90 g/100 g, and increased the resistant starch content from 17.54 to 36.54 g/100 g. The addition of RP improved the thermal stability of the starch and reduced the amount of leached amylose. Infrared analysis shows that strong hydrogen bonds formed between RP (especially RP>10) and starch during co-gelatinization. In addition, RP improved the compactness of aggregated structure and played an important role in hindering the enzymatic hydrolysis of starch. These results enrich the theory of starch-protein interactions and have important implications for the development of carbohydrate-based foods with low digestibility and protein functional foods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。