The effects of mycobacterial RmlA perturbation on cellular dNTP pool, cell morphology, and replication stress in Mycobacterium smegmatis

分枝杆菌 RmlA 干扰对结核分枝杆菌细胞 dNTP 池、细胞形态和复制压力的影响

阅读:6
作者:Rita Hirmondó, Ármin Horváth, Dániel Molnár, György Török, Liem Nguyen, Judit Tóth

Abstract

The concerted action of DNA replication and cell division has been extensively investigated in eukaryotes. Well demarcated checkpoints have been identified in the cell cycle, which provides the correct DNA stoichiometry and appropriate growth in the progeny. In bacteria, which grow faster and less concerted than eukaryotes, the linkages between cell elongation and DNA synthesis are unclear. dTTP, one of the canonical nucleotide-building blocks of DNA, is also used for cell wall biosynthesis in mycobacteria. We hypothesize that the interconnection between DNA and cell wall biosynthesis through dTTP may require synchronization of these processes by regulating dTTP availability. We investigated growth, morphology, cellular dNTP pool, and possible signs of stress in Mycobacterium smegmatis upon perturbation of rhamnose biosynthesis by the overexpression of RmlA. RmlA is a cell wall synthetic enzyme that uses dTTP as the precursor for cross-linking the peptidoglycan with the arabinogalactan layers by a phosphodiester bond in the mycobacterial cell wall. We found that RmlA overexpression results in changes in cell morphology, causing cell elongation and disruption of the cylindrical cell shape. We also found that the cellular dTTP pool is reduced by half in RmlA overexpressing cells and that this reduced dTTP availability does not restrict cell growth. We observed 2-6-fold increases in the gene expression of replication and cell wall biosynthesis stress factors upon RmlA overexpression. Using super-resolution microscopy, we found that RmlA, acting to crosslink the nascent layers of the cell wall, localizes throughout the whole cell length in a helical pattern in addition to the cellular pole.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。