A Priori Activation of Apoptosis Pathways of Tumor (AAAPT) technology: Development of targeted apoptosis initiators for cancer treatment

肿瘤凋亡途径先验激活 (AAAPT) 技术:开发用于癌症治疗的靶向凋亡启动剂

阅读:8
作者:Raghu S Pandurangi, Marco Tomasetti, Sekar T Verapazham, Ramasamy Paulmurugan, Cynthia Ma, Sandeep Rajput, Manjushree Anjanappa, Harikrishna Nakshatri

Abstract

Cancer cells develop tactics to circumvent the interventions by desensitizing themselves to interventions. Amongst many, the principle routes of desensitization include a) activation of survival pathways (e.g. NF-kB, PARP) and b) downregulation of cell death pathways (e.g. CD95/CD95L). As a result, it requires high therapeutic dose to achieve tumor regression which, in turn damages normal cells through the collateral effects. Methods are needed to sensitize the low and non-responsive resistant tumor cells including cancer stem cells (CSCs) in order to evoke a better response from the current treatments. Current treatments including chemotherapy can induce cell death only in bulk cancer cells sparing CSCs and cancer resistant cells (CRCs) which are shown to be responsible for high recurrence of disease and low patient survival. Here, we report several novel tumor targeted sensitizers derived from the natural Vitamin E analogue (AMP-001-003). The drug design is based on a novel concept "A priori activation of apoptosis pathways of tumor technology (AAAPT) which is designed to activate specific cell death pathways and inhibit survival pathways simultaneously and selectively in cancer cells sparing normal cells. Our results indicate that AMP-001-003 sensitize various types of cancer cells including MDA-MB-231 (triple negative breast cancer), PC3 (prostate cancer) and A543 (lung cancer) cells resulting in reducing the IC-50 of doxorubicin in vitro when used as a combination. At higher doses, AMP-001 acts as an anti-tumor agent on its own. The synergy between AMP-001 and doxorubicin could pave a new pathway to use AAAPT leading molecules as neoadjuvant to chemotherapy to achieve better efficacy and reduced off-target toxicity compared to the current treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。