Integration of small RNA, degradome and proteome sequencing in Oryza sativa reveals a delayed senescence network in tetraploid rice seed

水稻小RNA、降解组和蛋白质组测序的整合揭示了四倍体水稻种子的延迟衰老网络

阅读:5
作者:Baosheng Huang, Lu Gan, Dongjie Chen, Yachun Zhang, Yujie Zhang, Xiangli Liu, Si Chen, Zhisong Wei, Liqi Tong, Zhaojian Song, Xianhua Zhang, Detian Cai, Changfeng Zhang, Yuchi He

Abstract

Seed of rice is an important strategic resource for ensuring the security of China's staple food. Seed deterioration as a result of senescence is a major problem during seed storage, which can cause major economic losses. Screening among accessions in rice germplasm resources for traits such as slow senescence and increased seed longevity during storage is, therefore, of great significance. However, studies on delayed senescence in rice have been based mostly on diploid rice seed to date. Despite better tolerance have been verified by the artificial aging treatment for polyploid rice seed, the delayed senescence properties and delayed senescence related regulatory mechanisms of polyploid rice seed are rarely reported, due to the lack of polyploid rice materials with high seed set. High-throughput sequencing was applied to systematically investigate variations in small RNAs, the degradome, and the proteome between tetraploid and diploid rice seeds. Degradome sequencing analysis of microRNAs showed that expression of miR-164d, which regulates genes encoding antioxidant enzymes, was changed significantly, resulting in decreased miRNA-mediated cleavage of target genes in tetraploid rice. Comparisons of the expression levels of small RNAs (sRNAs) in the tetraploid and diploid libraries revealed that 12 sRNAs changed significantly, consistent with the findings from degradome sequencing. Furthermore, proteomics also showed that antioxidant enzymes were up-regulated in tetraploid rice seeds, relative to diploids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。