Extended cleavage specificity of human neutrophil cathepsin G: A low activity protease with dual chymase and tryptase-type specificities

人类中性粒细胞蛋白酶 G 的扩展裂解特异性:具有双重糜蛋白酶和类胰蛋白酶类型特异性的低活性蛋白酶

阅读:7
作者:Michael Thorpe, Zhirong Fu, Gurdeep Chahal, Srinivas Akula, Jukka Kervinen, Lawrence de Garavilla, Lars Hellman

Abstract

Human neutrophils express at least four active serine proteases, cathepsin G, N-elastase, proteinase 3 and neutrophil serine protease 4 (NSP4). They have all been extensively studied due to their importance in neutrophil biology and immunity. However, their extended cleavage specificities have never been determined in detail. Here we present a detailed cleavage specificity analysis of human cathepsin G (hCG). The specificity was determined by phage display analysis and the importance of individual amino acids in and around the cleavage site was then validated using novel recombinant substrates. To provide a broader context to this serine protease, a comparison was made to the related mast cell protease, human chymase (HC). hCG showed similar characteristics to HC including both the primary and extended specificities. As expected, Phe, Tyr, Trp and Leu were preferred in the P1 position. In addition, both proteases showed a preference for negatively charged amino acids in the P2´ position of substrates and a preference for aliphatic amino acids both upstream and downstream of the cleavage site. However, overall the catalytic activity of hCG was ~10-fold lower than HC. hCG has previously been reported to have a dual specificity consisting of chymase and tryptase-type activities. In our analysis, tryptase activity against substrates with Lys in P1 cleavage position was indeed only 2-fold less efficient as compared to optimal chymase substrates supporting strong dual-type specificity. We hope the information presented here on extended cleavage specificities of hCG and HC will assist in the search for novel in vivo substrates for these proteases as well as aid in the efforts to better understand the role of hCG in immunity and bacterial defence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。