STING Activation in Macrophages and Microglia Drives Poststroke Inflammation: Implications for Neuroinflammatory Mechanisms and Therapeutic Interventions

巨噬细胞和小胶质细胞中的 STING 激活会引发中风后炎症:对神经炎症机制和治疗干预的影响

阅读:5
作者:Zhiruo Liu, Qin Qin, Shisi Wang, Xinmei Kang, Yuxin Liu, Lei Wei, Zhengqi Lu, Wei Cai, Mengyan Hu

Background

Monocyte-derived macrophages and microglia initially adopt an anti-inflammatory phenotype following stroke but later transition to a pro-inflammatory state. The mechanisms underlying this phenotypic shift remain unclear. This study investigates the activation dynamics of molecular signaling pathways in macrophages and microglia after stroke.

Conclusion

These findings elucidated the critical role of STING-mediated type I interferon signaling in driving post-stroke neuroinflammation and underscored the potential of STING inhibition as a therapeutic strategy for alleviating neuroinflammatory responses following stroke.

Methods

We utilized publicly available single-cell RNA sequencing datasets to examine the activation dynamics of molecular signaling pathways alongside the pro-inflammatory phenotype of macrophages and microglia. Male C57BL/6 mice underwent transient middle cerebral artery occlusion (tMCAO), with the STING inhibitor H151 administered to tMCAO mice. Neurobehavioral performance was assessed using rotarod, foot fault, novel object recognition, and water maze tests at 5-, 7-, 10-, and 14-days post-stroke. Primary microglia and bone marrow-derived macrophages were cultured for in vitro experiments.

Results

Single-cell sequencing data indicated that the activation of STING and subsequent type I interferon signaling drove the phenotypic shift of microglia and macrophages toward a pro-inflammatory state in the stroke lesion. Immunostaining demonstrated that the emergence of pro-inflammatory microglia and macrophages aligned with the activation time course of STING and type I interferon signaling. Continuous phagocytosis by macrophages and microglia led to STING activation, which triggered type I interferon signaling and promoted the phenotypic shift. Inhibition of STING signaling prevented this transition, reduced neuroinflammation, and conferred protection against ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。