Lipopolysaccharide immune stimulation but not β-mannanase supplementation affects maintenance energy requirements in young weaned pigs

脂多糖免疫刺激而非β-甘露聚糖酶补充影响断奶仔猪的维持能量需求

阅读:29
作者:Nichole F Huntley, C Martin Nyachoti, John F Patience

Background

Pathogen or diet-induced immune activation can partition energy and nutrients away from growth, but clear relationships between immune responses and the direction and magnitude of energy partitioning responses have yet to be elucidated. The objectives were to determine how β-mannanase supplementation and lipopolysaccharide (LPS) immune stimulation affect maintenance energy requirements (MEm) and to characterize immune parameters, digestibility, growth performance, and energy balance.

Conclusions

This experiment provides novel data on β-mannanase supplementation effects on immune parameters and energy balance in pigs and is the first to directly relate decreased ADG to increased MEm independent of changes in feed intake in immune challenged pigs. Immune stimulation increased energy partitioning to the immune system by 23% which limited lipid deposition and weight gain. Understanding energy and nutrient partitioning in immune-stressed pigs may provide insight into more effective feeding and management strategies.

Methods

In a randomized complete block design, 30 young weaned pigs were assigned to either the control treatment (CON; basal corn, soybean meal and soybean hulls diet), the enzyme treatment (ENZ; basal diet + 0.056% β-mannanase), or the immune system stimulation treatment (ISS; basal diet + 0.056% β-mannanase, challenged with repeated increasing doses of Escherichia coli LPS). The experiment consisted of a 10-d adaptation period, 5-d digestibility and nitrogen balance measurement, 22 h of heat production (HP) measurements, and 12 h of fasting HP measurements in indirect calorimetry chambers. The immune challenge consisted of 4 injections of either LPS (ISS) or sterile saline (CON and ENZ), one every 48 h beginning on d 10. Blood was collected pre- and post-challenge for complete blood counts with differential, haptoglobin and mannan binding lectin, 12 cytokines, and glucose and insulin concentrations.

Results

Beta-mannanase supplementation did not affect immune status, nutrient digestibility, growth performance, energy balance, or MEm. The ISS treatment induced fever, elevated proinflammatory cytokines and decreased leukocyte concentrations (P < 0.05). The ISS treatment did not impact nitrogen balance or nutrient digestibility (P > 0.10), but increased total HP (21%) and MEm (23%), resulting in decreased lipid deposition (-30%) and average daily gain (-18%) (P < 0.05). Conclusions: This experiment provides novel data on β-mannanase supplementation effects on immune parameters and energy balance in pigs and is the first to directly relate decreased ADG to increased MEm independent of changes in feed intake in immune challenged pigs. Immune stimulation increased energy partitioning to the immune system by 23% which limited lipid deposition and weight gain. Understanding energy and nutrient partitioning in immune-stressed pigs may provide insight into more effective feeding and management strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。