SHIP-deficient dendritic cells, unlike wild type dendritic cells, suppress T cell proliferation via a nitric oxide-independent mechanism

与野生型树突状细胞不同,缺乏 SHIP 的树突状细胞通过一氧化氮非依赖性机制抑制 T 细胞增殖

阅读:7
作者:Frann Antignano, Melisa Hamilton, Scott Patterson, Victor Ho, Carla Cohen, Megan K Levings, Gerald Krystal

Background

Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated. Methodology/principal findings: In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs. Conclusions: These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented.

Conclusions

These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。