Cytostatic factor proteins are present in male meiotic cells and beta-nerve growth factor increases mos levels in rat late spermatocytes

细胞抑制因子蛋白存在于雄性减数分裂细胞中,β-神经生长因子可增加大鼠晚期精母细胞中的 mos 水平

阅读:9
作者:Marie-Hélène Perrard, Emeric Chassaing, Guillaume Montillet, Odile Sabido, Philippe Durand

Background

In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF regulates the second meiotic division by blocking secondary spermatocytes in metaphase (metaphase II), and thereby lowers round spermatid formation. In vertebrates, mature oocytes are arrested at metaphase II until fertilization, because of the presence of cytostatic factor (CSF) in their cytoplasm. By analogy, we hypothesized the presence of CSF in male germ cells. Methodology/principal findings: We show here, that Mos, Emi2, cyclin E and Cdk2, the four proteins of CSF, and their respective mRNAs, are present in male rat meiotic cells; this was assessed by using Western blotting, immunocytochemistry and reverse transcriptase PCR. We measured the relative cellular levels of Mos, Emi2, Cyclin E and Cdk2 in the meiotic cells by flow cytometry and found that the four proteins increased throughout the first meiotic prophase, reaching their highest levels in middle to late pachytene spermatocytes, then decreased following the meiotic divisions. In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF increased the number of metaphases II, while enhancing Mos and Emi2 levels in middle to late pachytene spermatocytes, pachytene spermatocytes in division and secondary spermatocytes.

Significance

Our results suggest that CSF is not restricted to the oocyte. In addition, they reinforce the view that NGF, by enhancing Mos in late spermatocytes, is one of the intra-testicular factors which adjusts the number of round spermatids that can be supported by Sertoli cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。