High-Throughput Screening and Prediction Model Building for Novel Hemozoin Inhibitors Using Physicochemical Properties

利用物理化学性质对新型疟原虫抑制剂进行高通量筛选和预测模型构建

阅读:5
作者:Nguyen Tien Huy, Pham Lan Chi, Jun Nagai, Tran Ngoc Dang, Evaristus Chibunna Mbanefo, Ali Mahmoud Ahmed, Nguyen Phuoc Long, Le Thi Bich Thoa, Le Phi Hung, Afaf Titouna, Kaeko Kamei, Hiroshi Ueda, Kenji Hirayama

Abstract

It is essential to continue the search for novel antimalarial drugs due to the current spread of resistance against artemisinin by Plasmodium falciparum parasites. In this study, we developed in silico models to predict hemozoin inhibitors as a potential first-step screening for novel antimalarials. An in vitro colorimetric high-throughput screening assay of hemozoin formation was used to identify hemozoin inhibitors from 9,600 structurally diverse compounds. The physicochemical properties of positive hits and randomly selected compounds were extracted from the ChemSpider database; they were used for developing prediction models to predict hemozoin inhibitors using two different approaches, i.e., traditional multivariate logistic regression and Bayesian model averaging. Our results showed that a total of 224 positive-hit compounds exhibited the ability to inhibit hemozoin formation, with 50% inhibitory concentrations (IC50s) ranging from 3.1 μM to 199.5 μM. The best model according to traditional multivariate logistic regression included the three variables octanol-water partition coefficient, number of hydrogen bond donors, and number of atoms of hydrogen, while the best model according to Bayesian model averaging included the three variables octanol-water partition coefficient, number of hydrogen bond donors, and index of refraction. Both models had a good discriminatory power, with area under the curve values of 0.736 and 0.781 for the traditional multivariate model and Bayesian model averaging, respectively. In conclusion, the prediction models can be a new, useful, and cost-effective approach for the first screen of hemozoin inhibition-based antimalarial drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。