Inhibiting leukocyte-endothelial cell interactions by Chinese medicine Tongxinluo capsule alleviates no-reflow after arterial recanalization in ischemic stroke

中药通心络胶囊抑制白细胞-内皮细胞相互作用缓解缺血性卒中动脉再通后无复流

阅读:9
作者:Shen Liu, Zhaoxu Zhang, Yannan He, Lingbo Kong, Qiushuo Jin, Xiangjia Qi, Dahe Qi, Ying Gao

Aims

Despite successful vascular recanalization in stroke, one-fourth of patients have an unfavorable outcome due to no-reflow. The pathogenesis of no-reflow is fully unclear, and therapeutic strategies are lacking. Upon traditional Chinese medicine, Tongxinluo capsule (TXL) is a potential therapeutic agent for no-reflow. Thus, this study is aimed to investigate the pathogenesis of no-reflow in stroke, and whether TXL could alleviate no-reflow as well as its potential mechanisms of action.

Conclusion

Leukocyte-endothelial cell interactions mediated by multiple inflammatory factors are an important cause of no-reflow in stroke. Accordingly, TXL could alleviate no-reflow via suppressing the interactions through modulating various leukocyte subtypes and inhibiting the expression of multiple inflammatory mediators.

Methods

Mice were orally administered with TXL (3.0 g/kg/d) after transient middle cerebral artery occlusion. We examined the following parameters: neurological function, no-reflow, leukocyte-endothelial cell interactions, HE staining, leukocyte subtypes, adhesion molecules, and chemokines.

Results

Our results showed stroke caused neurological deficits, neuron death, and no-reflow. Adherent and aggregated leukocytes obstructed microvessels as well as leukocyte infiltration in ischemic brain. Leukocyte subtypes changed after stroke mainly including neutrophils, lymphocytes, regulatory T cells, suppressor T cells, helper T type 1 (Th1) cells, Th2 cells, B cells, macrophages, natural killer cells, and dendritic cells. Stroke resulted in upregulated expression of adhesion molecules (P-selectin, E-selectin, and ICAM-1) and chemokines (CC-chemokine ligand (CCL)-2, CCL-3, CCL-4, CCL-5, and chemokine C-X-C ligand 1 (CXCL-1)). Notably, TXL improved neurological deficits, protected neurons, alleviated no-reflow and leukocyte-endothelial cell interactions, regulated multiple leukocyte subtypes, and inhibited the expression of various inflammatory mediators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。