Inhibiting endoplasmic reticulum stress alleviates perioperative neurocognitive disorders by reducing neuroinflammation mediated by NLRP3 inflammasome activation

抑制内质网应激可通过减少 NLRP3 炎症小体激活介导的神经炎症来缓解围手术期神经认知障碍

阅读:8
作者:Fanbing Meng, Jian Song, Xinwei Huang, Meixian Zhang, Xiaoxiao Sun, Qi Jing, Silu Cao, Zheng Xie, Qiong Liu, Hui Zhang, Cheng Li

Aim

The aim of this study is to explore the key mechanisms of perioperative neurocognitive dysfunction (PND) after anesthesia/surgery (A/S) by screening hub genes.

Conclusions

Inhibiting ER stress alleviated cognitive impairment in A/S mice; particularly, ER stress induced by A/S results in NLRP3 inflammasome activation and neuroinflammation. Moreover, the preoperative administration of TUDCA inhibited ER stress, NLRP3 inflammasome activation, and neuroinflammation.

Methods

Transcriptome sequencing was conducted on hippocampal samples obtained from 18-month-old C57BL/6 mice assigned to control (Ctrl) and A/S groups. The functionality of differentially expressed genes (DEGs) was investigated using Metascape. Hub genes associated with changes between the two groups were screened by combining weighted gene coexpression network analysis within CytoHubba. Reverse transcription PCR and western blotting were used to validate changes in mRNA and protein expression, respectively. NLRP3 inflammasome activation was detected by western blotting and ELISA. Tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress, was administrated preoperatively to explore its effects on the occurrence of PND. Immunofluorescence analysis was performed to evaluate the activation of astrocytes and microglia in the hippocampus, and hippocampus-dependent learning and memory were assessed using behavioral experiments.

Results

In total, 521 DEGs were detected between the control and A/S groups. These DEGs were significantly enriched in biological processes related to metabolic processes and their regulation. Four hub genes (Hspa5, Igf1r, Sfpq, and Xbp1) were identified. Animal experiments have shown that mice in the A/S group exhibited cognitive impairments accompanied by increased Hspa5 and Xbp1 expression, ER stress, and activation of NLRP3 inflammasome. Conclusions: Inhibiting ER stress alleviated cognitive impairment in A/S mice; particularly, ER stress induced by A/S results in NLRP3 inflammasome activation and neuroinflammation. Moreover, the preoperative administration of TUDCA inhibited ER stress, NLRP3 inflammasome activation, and neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。