Load-deformation characteristics of acellular human scalp: assessing tissue grafts from a material testing perspective

无细胞人类头皮的负载变形特性:从材料测试角度评估组织移植

阅读:7
作者:Johann Zwirner, Benjamin Ondruschka, Mario Scholze, Gundula Schulze-Tanzil, Niels Hammer

Abstract

Acellular matrices seem promising scaffold materials for soft tissue regeneration. Biomechanical properties of such scaffolds were shown to be closely linked to tissue regeneration and cellular ingrowth. This given study investigated uniaxial load-deformation properties of 34 human acellular scalp samples and compared these to age-matched native tissues as well as acellular dura mater and acellular temporal muscle fascia. As previously observed for human acellular dura mater and temporal muscle fascia, elastic modulus (p = 0.13) and ultimate tensile strength (p = 0.80) of human scalp samples were unaffected by the cell removal. Acellular scalp samples showed a higher strain at maximum force compared to native counterparts (p = 0.02). The direct comparison of acellular scalp to acellular dura mater and temporal muscle fascia revealed a higher elasticity (p < 0.01) and strain at maximum force (p = 0.02), but similar ultimate tensile strength (p = 0.47). Elastic modulus and ultimate tensile strength of acellular scalp decreased with increasing post-mortem interval. The elongation behavior formed the main biomechanical difference between native and acellular human scalp samples with elastic modulus and ultimate tensile strength being similar when comparing the two.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。