Acute vascular effects of vascular endothelial growth factor inhibition in the forearm arterial circulation

血管内皮生长因子抑制对前臂动脉循环的急性血管影响

阅读:6
作者:Alan C Cameron, Paul Welsh, Karla B Neves, David E Newby, Rhian M Touyz, Ninian N Lang

Conclusion

Acute exposure to bevacizumab does not directly cause endothelial vasomotor or fibrinolytic dysfunction in healthy young volunteers.

Methods

Using forearm venous occlusion plethysmography, we measured forearm blood flow during intra-arterial infusions of bevacizumab (36-144 μg/dl forearm volume per minute) administered for 15-60 min in healthy volunteers (n = 6-8). On two separate occasions in 10 healthy volunteers, we further measured forearm blood flow and tissue plasminogen activator (t-PA) release during intra-arterial bradykinin infusion (100 and 1000 pmol/min) in the presence and absence of bevacizumab (144 μg/dl forearm volume per minute), and the presence and absence of endothelin A receptor antagonism with BQ-123 (10 nmol/min). Plasma t-PA and plasminogen activator inhibitor-1 (PAI-1) concentrations were measured at baseline and with each dose of bradykinin.

Objective

Although vascular endothelial growth factor inhibition (VEGFi) represents a major therapeutic advance in oncology, it is associated with hypertension and adverse vascular thrombotic events. Our objective was to determine whether VEGFi caused direct vascular dysfunction through increased endothelin-1 (ET-1) activity or impaired endothelial vasomotor or fibrinolytic function.

Results

Baseline blood flow and plasma ET-1, t-PA and PAI-1 concentrations were unaffected by bevacizumab. Bradykinin caused dose-dependent vasodilatation (P < 0.0001) and t-PA release (P < 0.01) but had no effect on plasma PAI-1 concentrations. Neither bevacizumab nor BQ-123 affected bradykinin-induced vasodilatation and t-PA release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。