A discrete interface in matrix stiffness creates an oscillatory pattern of endothelial monolayer disruption

基质刚度中的离散界面产生内皮单层破坏的振荡模式

阅读:13
作者:Jacob A VanderBurgh, Archit V Potharazu, Samantha C Schwager, Cynthia A Reinhart-King

Abstract

Intimal stiffening upregulates endothelial cell contractility, disrupting barrier integrity; however, intimal stiffening is non-uniform. The impact of local changes in intimal stiffness on proximal and distal cell-cell interactions is unknown. To investigate the range at which matrix stiffness heterogeneities impact neighboring endothelial cells within a monolayer, we built a micropillar system with adjacent regions of stiff and compliant matrix. The stiffness interface results in an oscillatory pattern of neutrophil transendothelial migration, symmetrical about the interface and well-fit by a sinusoid function. 'Peaks' of the sinusoid were found to have increased cellular contractility and decreased barrier function relative to 'troughs' of the sinusoid. Pharmacological modulation of contractility was observed to break symmetry, altering the amplitude and wavelength of the sinusoid, indicating that contractility may regulate this effect. This work illuminates a novel biophysical phenomenon of the role of stiffness-mediated cell-matrix interactions on cell-cell interactions at a distance. Additionally, it provides insight into the range at which intimal matrix stiffness heterogeneities will impact endothelial barrier function and potentially contribute to atherogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。