Ginsenoside Rg1 Regulates the Activation of Astrocytes Through lncRNA-Malat1/miR-124-3p/Lamc1 Axis Driving PI3K/AKT Signaling Pathway, Promoting the Repair of Spinal Cord Injury

人参皂苷Rg1通过lncRNA-Malat1/miR-124-3p/Lamc1轴驱动PI3K/AKT信号通路调控星形胶质细胞活化,促进脊髓损伤修复

阅读:4
作者:Yin Zhu, Wenjun Zou, Baihan Sun, Kelv Shen, Feiyun Xia, Hao Wang, Fengxian Jiang, Zhengfeng Lu

Aim

To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI).

Conclusions

Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.

Methods

Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB). Immunofluorescence staining and immunohistochemistry were utilized to measure Lamc1 expression, while changes in cavity area were observed through hematoxylin-eosin (HE) staining. Basso-Beattie-Bresnahan (BBB) scale and footprint analysis were used to evaluate functional recovery. WB was performed to assess the expression of PI3K/AKT pathway-related protein.

Results

Rg1 was found to upregulate Malat1 expression, which in turn modulated the Malat1/miR-124-3p/Lamc1 axis. Furthermore, Rg1 activated the PI3K/Akt signaling pathway, significantly reducing the SCI cavity area and improving hind limb motor function. However, knockout of Malat1 hindered these effects, and inhibition of miR-124-3p reversed the silencing effects of Malat1. Conclusions: Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。