Regulatory T cells promote functional recovery after spinal cord injury by alleviating microglia inflammation via STAT3 inhibition

调节性 T 细胞通过抑制 STAT3 缓解小胶质细胞炎症,促进脊髓损伤后的功能恢复

阅读:5
作者:Rui Liu, Ying Li, Ziyue Wang, Peng Chen, Yi Xie, Wensheng Qu, Minghuan Wang, Zhiyuan Yu, Xiang Luo

Background

Immediately after spinal trauma, immune cells, and proinflammatory cytokines infiltrate the spinal cord and disrupt the focal microenvironment, which impedes axon regeneration and functional recovery. Previous studies have reported that regulatory T cells (Tregs) enter the central nervous system and exert immunosuppressive effects on microglia during multiple sclerosis and stroke. However, whether and how Tregs interact with microglia and modulate injured microenvironments after spinal cord injury (SCI) remains unknown. Method: Regulatory T cells spatiotemporal characteristics were analyzed in a mouse contusion SCI model. Microglia activation status was evaluated by immunostaining and RNA sequencing. Cytokine production in injured spinal cord was examined using Luminex. The role of STAT3 in Treg-microglia crosstalk was investigated in a transwell system with isolated Tregs and primary microglia.

Conclusion

Our results suggest that Tregs promote functional recovery after SCI by alleviating microglia inflammatory reaction via STAT3.

Results

Regulatory T cells infiltration of the spinal cord peaked on day 7 after SCI. Treg depletion promoted microglia switch to a proinflammatory phenotype. Inflammation-related genes, such as ApoD, as well as downstream cytokines IL-6 and TNF-α were upregulated in microglia in Treg-depleted mice. STAT3 inhibition was involved in Treg-microglia crosstalk, and STAT3 chemical blockade improved function recovery in Treg-depleted mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。